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Building Blocks of Networks

Subgraph decomposition of an electronic circuit



Case Example of Subgraphs

Let’s consider all possible (non-isomorphoic)
directed subgraphs of size 3
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Case Example of Subgraphs

TRANSC-E.COLI
TRANSC-YEAST
TRANSC-YEAST-2
TRANSC-B.SUBTILIS

~ SIGNAL-TRANSDUCTION

TRANSC-DROSOPHILA
TRANSC-SEA-URCHIN
NEURONS

WWW-1 N=325,729
WWW-2 N=277,114
WWW-3 N=47,870
SOCIAL-1 N=67
SOCIAL-2 N=28
SOCIAL-3 N=32

LANGUAGES: ENGLISH
FRENCH

SPANISH

JAPANESE

BIPARTITE MODEL

Networks from the same domain have similar significance profiles



Network Motifs

Network motifs: “recurring, significant
patterns of interconnections”

How to define a network motif:

Pattern: Small induced subgraph

Recurring: Found many times, i.e., with high
frequency

Significant: More frequent than expected, i.e., in
randomly generated networks

Erdos-Renyi random graphs, scale-free networks



Why Do We Need Motifs?

. — X
Motifs: |
Help us understand how networks work Y
Help us predict operation and reaction of the L. |
network in a given situation F 4
Examples, Feed-forward loop

Feed-forward loops: found in networks of

neurons, where they neutralize “biological noise”x

Parallel loops: found in food webs /

Single-input modules: found in gene control Y\ /z
w

networks X
aﬁd Single-input module Parallel loop



Motifs: Induced Subgraphs

Induced subgraph
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Induced subgraph of graph G is a graph, formed from a subset X of the vertices of graph
G and all of the edges connecting pairs of vertices in subset X.



Motifs: Recurrence

Motif of interest:
D % | |
Allow overlapping of motifs I I

Network on the right has sje—> 4
4 occurrences of the motif:

{1,2,3,4,5}
{1,2,3,4,6}
{1,2,3,4,7}
{1,2,3,4,8}

N

Example borrowed from Pedro Ribeiro



Significance of a Motif

Key idea: Subgraphs that occur in a real
network much more often than in a random
network have functional significance

a b .
real network randomized networks
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Significance of a Motif

Motifs are overrepresented in a network when
compared to randomized networks:

Z; captures statistical significance of motif i:
— real jyjrand rand
Z; = (N[**=N2"%) /std(N;2"%)
NFedlis #(subgraphs of type i) in network G2

N,;rand is #(subgraphs of type i) in randomized network Grand

Network significance profile (SP):

—
SP, =Z;/ ZZJ?
j

\

SP is a vector of normalized Z-scores

SP emphasizes relative significance of subgraphs:
Important for comparison of networks of different sizes
Generally, larger networks display higher Z-scores



Configuration Model

Goal: Generate a random graph with a
given degree sequence &, k, ... ky
Useful as a “null” model of networks:

We can compare the real network G2l and a “random”

GTand which has the same degree sequence as G2

Configuration model:

|+

Ko oyt e
> oV P

Randomly pair up
“mini”-nodes

Nodes with spokes Resulting graph

We ignore double edges and self-loops when creating the final graph



Construct Random Graph

Start from a given graph G
Repeat the switching step Q - |E'| times:

Select a pair of edges A>B, C=>D at random A C
Exchange the endpoints to give A>D, C2>B 4
Exchange edges only if no multiple edges 1
or self-edges are generated
Avc
Result: A randomly rewired graph: = -

Same node degrees, randomly rewired edges

() is chosen large enough (e.g., Q = 100) for the
process to converge



otifs: Significance Exam
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- (Nireal_Nirand)/std(Nirand)

TRANSC-E.COLI
TRANSC-YEAST
TRANSC-YEAST-2
TRANSC-B.SUBTILIS

SIGNAL-TRANSDUCTION
TRANSC-DROSOPHILA
TRANSC-SEA-URCHIN
NEURONS

WWW-1 N=325,729
WWW-2 N=277 114
WWW-3 N=47.870
SOCIAL-1 N=67
SOCIAL-2 N=28
SOCIAL-3 N=32

LANGUAGES: ENGLISH
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SPANISH

JAPANESE

BIPARTITE MODEL



Detecting Motifs

Count subgraphs i in G2
Count subgraphs i in random networks Grand;

Configuration model: Each G™@"9 has the same

#(nodes), #(edges) and #(degree distribution) as G"¢?!

Assign Z-score to i:
Zi _ (Nirea]_Nirand)/std(Nirand)

High Z-score: Subgraph i R
is a network motif of G

nnnnnnnnnnnnnn



Motif Examples

Network Nodes Edges Nieal NandESD Zscore | Mreal NangESD Zscore | Nreal Nand 3D Zscore
Gene regulation X Feed- X I’ Bi-fan
{transcription) W forward
Y loop
W A W
7
E. coli 424 319 40 T3 10 203 47+12 13
5. cerevisige® 683 1,052 70 11+4 14 1812 300+40 41
Neurons X Feed- x Bi-fan X Bi-
W forward M Z N parallel
‘\FY loop z W “r-u #._L
7 W
C. eleganst 252 500 125 a0 + 10 3.7 127 55+ 13 5.3 227 35+10 20
Food webs X Three X Bi-
A4 chain 720 parallel
Y Y F i
' N ¥
L w
Little Rock 92 034 3219 3120 £ 50 21 7295 2220+ 210 25
Ythan a3 391 1182 1020 + 20 7.2 1357 230 = 50 23
St. Martin 42 205 469 450 + 10 NS 382 130 £ 20 12
Chesapeake 31 67 20 82 +4 NS 26 5x2 8
Coachella 29 243 279 23512 3.6 181 B0 %20 5
Skipwith 25 189 184 150+ 7 55 397 B0+25 13
B. Brook 23 104 181 130+7 T4 267 nDx7 32

Z-scores of individual motifs for different networks



Motif Examples

Network Nodes Edges Nrcal Nrand £SD 7 score I ’Vrcal Nrand +SD Z. score Nrcal Nrand £SD 7 score
Electronic circuits X Feed- X Y Bi-fan y X A Bi-
(forward logic chips) A4 forward ¥ 7 parallel

Y loop a5 g
Y Z W T
Z

515850 10,383 14,240 | 424 2%2 285 1040 1+1 1200 430 2+1 335
538584 20,717 34204 § 413 10+3 120 1739 6+ 800 711 9+2 320
s38417 23,843 33,661 | 612 3x2 400 2404 1+1 2550 531 22 340
50234 5,844 8,197 | 211 231 140 754 1x1 1050 200 1x1 200
513207 8,651 11,831 1 403 A ¥ | 225 1 4445 1+1 4950 264 2%+ 200
Electronic circuits X Three- X Y Bi-fan X—>Y Four-
(digital fractional multipliers) /1 \ node node

feedback feedback
Ye— 2 loop 7 w 71€<—W loop

5208 122 189 10 1+1 9 4 1+1 3.8 S 1+1 5
5420 252 399 20 121 18 10 1+1 10 11 1+1 11
s838% 512 819 40 121 38 M | 22 1+ 20 23 1+£1 25
World Wide Web X KFeedback X Fully X Uplinked

$ with two Z, N connected /’ \ mutual
& mutual Yy <> 7 triad VE—> 7 dyad
dyads
YA
nd.edu§ 325,729 1.46e6 | 1.1e5 2e3+1e2 800 6.8e6 Sedxdel 15,000 1.2e6 led + 2¢2 5000

Z-scores of individual motifs for different networks



Motif Examples

Network of neurons and a gene network
contain similar motifs:

Feed-forward loops and bi-fan structures

Both are information processing networks with
sensory and acting components

Food webs have parallel loops: ”\j&[‘
Prey of a particular predator share pre - Rl
Yy P P prey N

WWW network has bidirectional links

Design that allows the shortest path between sets
of related pages
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Graphlets: Node Feature Vectors
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Graphlets

Graphlets: connected non-isomorphic subgraphs

Induced subgraphs of any frequency

2-node 3-node graphlets 4-node graphlets
graphlet ; 5 4 10 13 14
0 5 (] 8
9
2 G3 G4 GS Gﬁ Gr Gg

Gy G,
Snodegraphlets
18 4}
4;'
19
Gy Gy Gl] Gy Gla Gy Gls Glﬁ Gl? Gig GIQ

37 65
@W@j %6@‘ @” @@
49 = 71
50 Ji 54 56 59

GZI} GZI GZZ G23 24 GES GEE GZT GZE GE'EI
Forn=3,4,5,..10thereare 2,6,21,..11716571 graphlets!



Motif vs Graphlet



Graphlet Degree Vector

Next: Use graphlets to obtain a node-level
subgraph metric

Degree counts #(edges) that a node touches:

Can we generalize this notion for graphlets? — Yes!

o

Graphlet degree vector counts #(graphlets)
that a node touches



Automorphism Orbits

An automorphism orbit takes into account the
symmetries of a subgraph

Graphlet Degree Vector (GDV): a vector with
the frequency of the node in each orbit position
Example: Graphlet degree vector of node v

For a node u of graph (, the
automorphism orbit of w is Orb(u) = {v €
V(G); v = f(u) for some f = Aut(G)}.

The Aut denotes an automorphism group
: of G, i.e., an isomorphism from G to itself.
orbit |a|b|c|d

GDV(v)

g
a's



Graphlet Degree Vector (GDV)

Graphlet degree vector counts #(graphlets) that a
node touches at a particular orbit
Considering graphlets on 2 to 5 nodes we get:

Vector of 73 coordinates is a sighature of a node that
describes the topology of node's neighborhood

Captures its interconnectivities out to a distance of 4 hops

Graphlet degree vector provides a measure of a
node’s local network topology:
Comparing vectors of two nodes provides a highly

constraining measure of local topological similarity
between them



Graphlet Degree Vector (GDV)

Orbat 011]2..314]5]6]7...14]15]16...18|19]20...26]27]28...34]|35]36...72
GDV(A)|1]2]0...0f3]|0}j1} 0.0} 1} 0.0 |1} 0.0 1] O0.0f1] 0.0

Graphlet Degree Vector (GDV) of node A:

i-th element of GDV(A): #(graphlets) that touch A at
orbit i

Highlighted are graphlets that touch node A at orbits
15, 19, 27, and 35 from left to right



Graphlet Kernels

The idea of graphlet kernel is to count the number of
graphlets in a graph like we did in Graphlet Degree
Vector. Although the idea of graphlet here is slightly
different. Here, graphlets need not to be disconnected
and not rooted as well.



Graphlet Kernels

Below example shows how to count graphlet for 3
node subgraph: For k = 3, there are 4 graphlets.

91 92 g3 9a
AN T
® o o
So, how to create graphlet kernel with this approach. Assume you have a

graph G, then the graphlet vector G; can be defined as graphlet count vector:

(tg)i=#(gi € G) fori=1,2,....,n;



Example fork =3. g,
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Then, if you have two graphs G and G’, you can calculate graphlet kernel with

the below formula:

K(G,G)=fs fe
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Finding Motifs & Graphlets
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Algorithms

Finding size-k motifs/graphlets requires solving
two challenges:

1) Enumerating all size-k connected subgraphs
2) Counting #(occurrences of each subgraph type)

Just knowing if a certain subgraph exists in a
graph is a hard computational problem!

Subgraph isomorphism is NP-complete

Computation time grows exponentially as the
size of the motif/graphlet increases

Feasible motif size is usually small (3 to 8)



Courting Subgraphs

Network-centric approaches:

1) Enumerating all size-k connected subgraphs

2) Counting #(occurrences of each subgraph type)
via graph isomorphisms test



Exact Subgraph Enumeration (ESU)

Two sets:
Vsubgraph - currently constructed subgraph (motif)
Vextension: set of candidate nodes to extend the motif

Idea: Starting with a node v, add those nodes u
to Vextension S€t that have two properties:
u’s node_id must be larger than that of v

1 may only be neighbored to some newly added node
w but not of any node already in Vsypgraph

ESU is implemented as a recursive function:

The running of this function can be displayed as a
tree-like structure of depth k, called the ESU-Tree



Exact Subgraph Enumeration (ESU)

Algorithm: ENUMERATESUBGRAPHS(G, k) (ESU)
Input: A graph G = (V, E) and an integer 1 < k < |V].
Output: All size-k subgraphs in G.

01 for each vertex v € V do

02 VEstension +— {’UL = N({’U}) U > ’U}

03 call EXTENDSUBGRAPH ({v}, VEstension, V)
04 return

EXTENDSUBGRAPH(Vsybgraphs VEstension, V)
E1 if |Vsupgrapn| = k then output G|[Vsupgrpn] and return
E2 while Vigension # 0 do
E3 Remove an arbitrarily chosen vertex w from Viggtension
E4 Véﬂgmmn — VEmten&ion U {‘L-: € N, e:ncl(w; VSubgmph) U >v }
E5  call EXTENDSUBGRAPH(Vsyubgraph U {W}, Viension: V)
E6 return

*'ﬁ""'-L-'.'-L':'!("'Jl'fr L"I.H"l.!h_n:;r't.!,r).fl_) — *'ﬁ"-'i('l"l'f)\{l’iﬁ'u.‘u;r't.!lr).fl_ U N{L’}.H'uhyr'agl.‘::]) is exclusive
neighborhood: All nodes neighboring w but not of Vs, grapn OF N (Vsup grapn)



ESU-Tree Example

EnumerateSubgraphs(G, k = 3): EXTENDSUBGRAPH(Vsugrapn, Vestension, v)

. ) Root |
(N
4\ ExtendSubgraph({1},{3},1)

\|f3=/v L L 4 ¥ v r

/ /\ ({1}, 3 ({2} 3 (3}, 145}) ({4}, 59 ({5}, {o})
YO * ~
N 2/ VSH-l?,ffi"ﬂi‘.l'-’t1 Vextension ¥ 1

({1.3}. {2.4.51) ({2.3}. {4.51) ({34} 5D ({4.5}. {0}

4
i+ 4 | -
3 () G) (5) (o —(5) Leaves represent
f_( A \<(3\ J \,;,\ ,\I/v i/ all size-3 induced
' w2

p
@ @ 2 f 3/ | } \}X & sub-graphs
/'\I P Y o '\|
() 1) 2) 2

Nodes in the ESU-tree include two adjoining sets:
Vsubgrapn: Current subgraph (a set of adjacent nodes)

Vortension - Nodes adjacent tDVsubqrn.ph whose node_ids are
larger than starting node v



Use ESU-Tree to Count Subgraphs

So far, we enumerated all size-k subgraphs in
the input graph
Next step: Count the graphs

QO O ® -G
@ © %“ ©,



Use ESU-Tree to Count Subgraphs

So far, we enumerated all size-k subgraphs in
the input graph
Next step: Count the graphs
Classify subgraphs placed in the ESU-Tree |leaves
into non-isomorphic size-k classes:

Determine which subgraphs in ESU-Tree leaves are
topologically equivalent (isomorphic) and group
them into subgraph classes accordingly

Use McKay’s nauty algorithm [VcKay 1981



Graph Isomorphism

Graphs G and H are isomorphic if there exists a
bijection f:V(G) — V(H) such that:
Any two nodes u and v of G are adjacent in G iff
f(u) and f(v) are adjacent in H
Example: Are G and H topologically equivalent?
co e

4

7

3

8

b I T o O v = ) e =

9
6

Need to c'lheck 9! possible bijections Eetween node sets
Hard computational problem! G and H are isomorphic!
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Structure Roles vs Community
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What are Roles?

Roles are “functions” of nodes in a network:

Roles of species in ecosystems
Roles of individuals in companies

<
1Y
|
-
| L = b *
”Aw/' . ii@is Q= s -y 1
oy L gl ® & ?
l | | 1
e 329 2 D

Roles are measured by structural behaviors:
centers of stars
members of cliques

peripheral nodes, etc.



Roles vs Groups

Role: A collection of nodes which have similar

positions in a network:

Roles are based on the similarity of ties between subsets of
nodes

Different from groups/communities

Group is formed based on adjacency, proximity or
reachability

This is typically adopted in current data mining

Nodes with the same role need not be in direct,
or even indirect interaction with each other



Roles vs Groups

Roles:

A group of nodes with similar structural properties
Communities/Groups:

A group of nodes that are well-connected to each other
Roles and communities are complementary

Consider the social network of a CS Dept:
Roles: Faculty, Staff, Students
Communities: Al Lab, Info Lab, Theory Lab



Roles vs Groups

Communities
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Roles: More Formally

Structural equivalence: Nodes u and v are

structurally equivalent if they have the same

relationships to all other nodes [Lorrain & White
1971]

Structurally equivalent nodes are likely to be similar in
other ways —i.e., friendships in social networks




Structural Equivalence Example

Nodes u and v are structurally equivalent:

For all the other nodes k, node u has tie to k iff node v
has tie to k

Adjacency matrix

Example: 1 121314 5
| |- 10 (1|10
2|0 (-1(1]1]0
31010 0
4100 I
51010 0

E.g., nodes 3 and 4 are structurally equivalent



] liberal
QO conservative

1 m B P
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Bright red nodes are Bright blue nodes are
locally central nodes peripheral nodes

Book labels (i.e., liberal, conservative, neutral) were not
given to role discovery algorithm



Why Are Roles Importantn?

Task Example Application

Role query |dentify individuals with similar behavior to a known
target

Role outliers |dentify individuals with unusual behavior

Role dynamics ldentify unusual changes in behavior

Identity resolution |dentify, de-anonymize, individuals in a new network

Role transfer Use knowledge of one network to make predictions in
another another

Network comparison | Compute similarity of networks, determine
compatibility for knowledge transfer




Structural Role Discovery Method

Role Discovery

RolX: Automatic discovery

of nodes’ structural roles in W Input
networks (Henderson, et al. 2011b) i{\ﬂ j[:

Unsupervised learning approach

No prior knowledge required @ Output
Assigns a mixed-membership of W
roles to each node :'k X
Scales linearly in #(edges)

ﬂuto mated discovery
\/Behavioral roles

\ﬁzales generalize




RolX: Approach Overview

Input

Node x Node
Adjacency Matrix

Recursive
Feature
Extraction

Node x Role
Matrix

Example: degree,
mean weight, # of
Node x Feature | edges in egonet,
Matrix mean clustering
coefficient of
l neighbors, efc.
Role
Extraction

Role x Feature
Matrix



Recursive Feature Extraction

Recursive feature extraction [Henderson, et al. 2011a] turns
network connectivity into structural features

I

| Reg:i::}nal
" Neighborhood
P s ¢ .J" y fjl'. - .
[ Local Y Egonet Y Recursive |
' M1 | 1 | | o« | = | |+ [ =] s ]
Recursive — -
( @
feature '

Egonet for red node

Neighborhood features: What is a node’s connectivity pattern?
Recursive features: To what kinds of nodes is a node connected?



Recursive Feature Extraction

Idea: Aggregate features of a node and use them
to generate new recursive features

Base set of a node’s neighborhood features:

Local features: All measures of the node degree:
If network is directed, include in- and out-degree, total degree

If network is weighted, include weighted feature versions

Egonet features: Computed on the node’s egonet:

Egonet includes the node, its neighbors, and any edges in the

induced subgraph on these nodes 0@
#(within-egonet edges), j E=
#(edges entering/leaving egonet) a )Y

Egonet for red node



Recursive Feature Extraction

Start with the base set of node features
Use the set of current node features to generate
additional features:

Two types of aggregate functions: mean and sum

E.g., mean value of “unweighted degree” feature between all
neighbors of a node

Compute means and sums over all current features, including other
recursive features Features

Repeat mEemnn

The number of possible recursive features ES==Ensssss
grows exponentially with each recursive iteration:

Reduce the number of features using a pruning technique:

Look for pairs of features that are highly correlated

Eliminate one of the features whenever two features are correlated
above a user-defined threshold



Role Extraction

Input

Recursively
extract features

Cluster nodes based on
extracted features

‘H%_ ff‘zg ' RolX uses non negative matrix
A N ¥ factorization for clustering, MDL for
Output model selection, and KL divergence to

measure likelihood



Any Question?
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